Convergence of Quantum Cohomology by Quantum Lefschetz

نویسنده

  • HIROSHI IRITANI
چکیده

Quantum Lefschetz theorem by Coates and Givental [4] gives a relationship between the genus 0 Gromov-Witten theory of X and the twisted theory by a line bundle L on X. We prove the convergence of the twisted theory under the assumption that the genus 0 theory for original X converges. As a byproduct, we prove the semisimplicity and the Virasoro conjecture for the Gromov-Witten theories of (not necessarily Fano) projective toric manifolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stokes Matrix for the Quantum Cohomology of Cubic Surfaces

We prove the conjectural relation between the Stokes matrix for the quantum cohomology of X and an exceptional collection generating D bcoh(X) when X is a smooth cubic surface. The proof is based on a toric degeneration of a cubic surface, the Givental’s mirror theorem for toric manifolds, and the Picard-Lefschetz theory.

متن کامل

Hodge Structures for Orbifold Cohomology

We construct a polarized Hodge structure on the primitive part of Chen and Ruan’s orbifold cohomology Hk orb(X) for projective SL-orbifolds X satisfying a “Hard Lefschetz Condition”. Furthermore, the total cohomology ⊕ p,q H p,q orb(X) forms a mixed Hodge structure that is polarized by every element of the Kähler cone of X. Using results of Cattani-Kaplan-Schmid this implies the existence of an...

متن کامل

ar X iv : h ep - t h / 95 08 06 7 v 2 1 8 Ju l 1 99 6 hep - th / 9508067 TOPOLOGICAL σ - MODEL , HAMILTONIAN DYNAMICS AND LOOP SPACE LEFSCHETZ NUMBER

We use path integral methods and topological quantum field theory techniques to investigate a generic classical Hamiltonian system. In particular, we show that Floer’s instanton equation is related to a functional Euler character in the quantum cohomology defined by the topological nonlinear σ–model. This relation is an infinite dimensional analog of the relation between Poincaré–Hopf and Gauss...

متن کامل

On Quantum Integrability and the Lefschetz Number

Certain phase space path integrals can be evaluated exactly using equivariant cohomology and localization in the canonical loop space. Here we extend this to a general class of models. We consider hamiltonians which are a priori arbitrary functions of the Cartan subalgebra generators of a Lie group which is defined on the phase space. We evaluate the corresponding path integral and find that it...

متن کامل

On Quantum De Rham Cohomology Theory

We define the quantum exterior product ∧h and quantum exterior differential dh on Poisson manifolds. The quantum de Rham cohomology, which is a deformation quantization of the de Rham cohomology, is defined as the cohomology of dh. We also define the quantum Dolbeault cohomology. A version of quantum integral on symplectic manifolds is considered and the corresponding quantum Stokes theorem is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005